1998 seminars


Room P3.10, Mathematics Building

Pedro Lopes, Instituto Superior Técnico

Primeira palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

Paulo Semião, Universidade do Algarve

Segunda palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

Marko Stosic, ISR

Terceira palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

Marco Mackaay, Universidade do Algarve

Quarta palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

João Martins, Instituto Superior Técnico

Quinta palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

Rui Carpentier, Instituto Superior Técnico

Sexta palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Room P3.10, Mathematics Building

Roger Picken, Instituto Superior Técnico

Sétima palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.


Amphitheatre Pa3, Mathematics Building

Pierre Cartier, Institut des Hautes Études Scientifiques

New methods in renormalization theories - I

The first occurence of the ideas of renormalisation in physics is due to Green, around 1850, who used such methods to study the motion of a pendulum in a fluid. The same kind of methods was proposed by J. Oppenheimer around 1930, to take in account the so-called radiative corrections to the spectral lines of atoms. Like the previous attempts in classical electrodynamics, this approach led to unphysical infinite quantities. As it si well-known, the new methods of Bethe, Schwinger, Tomonaga, Feynman and Dyson solved in principle the problem of infinities around 1950. But a conceptual breakthrough occured ten years ago when A. Connes and D. Kreimer introduced Hopf algebraic methods in this game. We propose to explain our own verion of these methods, emphasizing a certain infinite-dimensional group, the so-called dressing group. A striking feature is the deep analogy with groups introduced by Grothendieck under the name of motivic Galois groups. These lectures shall begin with a short historical review, followed by a description of the standard calculations, and then we shall describe in detail the new methods.


Room P4.35, Mathematics Building

Yassir Dinar, International School for Advanced Studies (SISSA), Trieste

Algebraic Frobenius manidolds and primitive conjugacy classes in Weyl group

We develop the theory of generalized bi-Hamiltonian reduction. Applying this theory to the loop algebra proved to be equivalent to a generalized Drinfeld-Sokolov reduction. This gives a way to construct new examples of algebraic Frobenius manifolds.


Room P3.10, Mathematics Building

Ugo Bruzzo, International School for Advanced Studies (SISSA), Trieste

Instantons and framed bundles on rational surfaces

The talk concerns a correspondence between framed instantons on the one-point compactification of an affine complex surface X, and framed holomorphic bundles on a projective completion of X. This correspondence is known for X the affine plane (Donaldson) and X the affine plane blown up at a point (King). After reviewing these cases, I will discuss possible generalizations (basically, when the projective completion is a rational surface). I will also spend some words on instanton countings on these surfaces. Physically this corresponds to studying the Nekrasov partition function for topological super Yang-Mills theories on X.