Primeira palestra dum Mini-Encontro do projecto "Topologia
Quântica", onde haverá apresentações curtas e informais de membros
do projecto sobre assuntos de interesse actual. Todos os
interessados bem-vindos.
–
Room P3.10, Mathematics Building
Paulo Semião, Universidade do Algarve
Segunda palestra dum Mini-Encontro do projecto "Topologia
Quântica", onde haverá apresentações curtas e informais de membros
do projecto sobre assuntos de interesse actual. Todos os
interessados bem-vindos.
–
Room P3.10, Mathematics Building
Marko Stosic, ISR
Terceira palestra dum Mini-Encontro do projecto "Topologia
Quântica", onde haverá apresentações curtas e informais de membros
do projecto sobre assuntos de interesse actual. Todos os
interessados bem-vindos.
–
Room P3.10, Mathematics Building
Marco Mackaay, Universidade do Algarve
Quarta palestra dum Mini-Encontro do projecto "Topologia Quântica",
onde haverá apresentações curtas e informais de membros do projecto
sobre assuntos de interesse actual. Todos os interessados
bem-vindos.
–
Room P3.10, Mathematics Building
João Martins, Instituto Superior Técnico
Quinta palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.
–
Room P3.10, Mathematics Building
Rui Carpentier, Instituto Superior Técnico
Sexta palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.
–
Room P3.10, Mathematics Building
Roger Picken, Instituto Superior Técnico
Sétima palestra dum Mini-Encontro do projecto "Topologia Quântica", onde haverá apresentações curtas e informais de membros do projecto sobre assuntos de interesse actual. Todos os interessados bem-vindos.
–
Amphitheatre Pa3, Mathematics Building
Pierre Cartier, Institut des Hautes Études Scientifiques
The first occurence of the ideas of renormalisation in physics is due to Green, around 1850, who used such methods to study the motion of a pendulum in a fluid. The same kind of methods was proposed by J. Oppenheimer around 1930, to take in account the so-called radiative corrections to the spectral lines of atoms. Like the previous attempts in classical electrodynamics, this approach led to unphysical infinite quantities. As it si well-known, the new methods of Bethe, Schwinger, Tomonaga, Feynman and Dyson solved in principle the problem of infinities around 1950. But a conceptual breakthrough occured ten years ago when A. Connes and D. Kreimer introduced Hopf algebraic methods in this game. We propose to explain our own verion of these methods, emphasizing a certain infinite-dimensional group, the so-called dressing group. A striking feature is the deep analogy with groups introduced by Grothendieck under the name of motivic Galois groups. These lectures shall begin with a short historical review, followed by a description of the standard calculations, and then we shall describe in detail the new methods.
–
Amphitheatre Pa3, Mathematics Building
Pierre Cartier, Institut des Hautes Études Scientifiques
We develop the theory of generalized bi-Hamiltonian reduction. Applying this theory to the loop algebra proved to be equivalent to a generalized Drinfeld-Sokolov reduction. This gives a way to construct new examples of algebraic Frobenius manifolds.
–
Room P3.10, Mathematics Building
Ugo Bruzzo, International School for Advanced Studies (SISSA), Trieste
The talk concerns a correspondence between framed instantons on the one-point compactification of an affine complex surface , and framed holomorphic bundles on a projective completion of . This correspondence is known for the affine plane (Donaldson) and the affine plane blown up at a point (King). After reviewing these cases, I will discuss possible generalizations (basically, when the projective completion is a rational surface). I will also spend some words on instanton countings on these surfaces. Physically this corresponds to studying the Nekrasov partition function for topological super Yang-Mills theories on .